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Large eddy simulation of fully developed turbulent flow
in a rotating pipe
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SUMMARY

Large eddy simulation (LES) has been applied to study the fully developed turbulent pipe flow, in
particular, to examine the effects of swirl driven by the rotating wall of the pipe. Experimental
observations have shown that the intensity of turbulence in the rotating pipe decreases gradually with an
increase in rotation rate due to the stabilizing effect of the centrifugal force. These experimentally
observed phenomena are confirmed numerically using LES by comparing not only mean velocity profiles
but also turbulent intensity and Reynolds stresses at two different rotation rates. The performance of two
different subgrid scale models, a dynamical model and the usual Smagorinsky model, has also been
assessed for the case of fully developed turbulent swirling flow. A brief description of the numerical
methods used with an efficient hybrid Fourier multigrid pressure solver is presented. Particular attention
has been paid to the numerical treatment of boundary conditions at the centreline. Copyright © 2000
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Swirling flows are very important phenomena found in nature and they have become of
interest in association with a wide range of applications. In non-reactive cases applications
include vortex amplifier, cyclone separators, agricultural spraying machines, heat exchangers,
etc. In combustion systems, such as in gasoline engines, gas turbines and industrial furnaces,
the dramatic effects of swirl to stabilize flames and to improve combustion efficiency have been
known and appreciated for many years.

The effects of the swirl driven by the rotating pipe wall on the flow characteristics have been
studied experimentally by many researchers and rotation has been found to have a big
influence on the suppression of turbulence because of radially growing centrifugal forces.
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White [1] and Shchukin [2] observed that the pressure loss decreased with increasing rotational
speed. Murakami et al. [3], Kikuyama et al. [4] and Reich et al. [5] measured the mean velocity
profiles and wall friction coefficients in the fully developed turbulent flow region for various
Reynolds numbers and rotation rates. Their experimental results showed that the mean axial
velocity profile gradually approaches a laminar shape with increasing rotation rate. Nishibori
et al. [6] and Kikuyama et al. [7] measured statistics on turbulent fluctuations. However, these
statistics were obtained near the entrance of the pipe rather than in the fully developed flow
region. Imao and Itoh [8] have recently measured not only mean velocity profiles but also
turbulence intensity and Reynolds shear stress in fully developed turbulent flow in an axially
rotating pipe. Their detailed measurements provide good validation data for numerical
computations and also confirm that when rotation is added to the pipe the turbulence
fluctuations are suppressed due to the stabilizing effects caused by the centrifugal force.

It is well established that the conventional two-equation k–o model has been successfully
applied to many engineering calculations, but it is also well known that its performance
becomes poor for certain situations, such as swirling flows [9]. This was verified in an axially
rotating pipe flow computation by Hirai et al. [10], that the conventional k–o model produces
very poor results, predicting a solid body rotation profile for the mean circumferential velocity
while the experimental studies show that it is not a solid body rotation but similar to a
parabolic distribution. It was also shown by Hirai et al. [10] that using a k–o model modified
by the Richardson number to take account of the effects of rotation still produces a solid body
rotation profile for the mean circumferential velocity and it is necessary to use full Reynolds
stress models for better prediction.

Large eddy simulation (LES) has become a very useful and powerful tool in turbulent flow
computations and is being applied to more and more practical engineering problems with the
advance of computing power and numerical techniques. However, the literature on LES work
in the area of turbulent pipe flow with swirl is very limited. Unger and Friedrich [11] reported,
to our knowledge, the first LES of fully developed turbulent pipe flow without swirl. Eggels et
al. [12] performed direct numerical simulation (DNS) of fully developed turbulent pipe flow
without swirl. Orlandi and Fatica [13] have recently reported the DNS of turbulent flow in a
rotating pipe and done detailed analysis of their results, relating the drag reduction to the
modifications of the near-wall vortical structure. However, the Reynolds number in their study
is relatively low and the application of DNS to practical engineering flows is still very limited
due to the computing power available now and in the near future. The only LES predictions
of fully developed turbulent pipe flow with rotation that we are aware of is that carried out by
Eggels and Nieuwstadt [14]. Their numerical results compared reasonably well with the
experimental data available at that time, which, however, lacked details of the Reynolds stress
field and what was available was not measured in the fully developed flow zone. They also
used only a Smagorinsky subgrid scale model in the simulation; how a dynamic subgrid scale
model would perform in such a rotating pipe flow case is unknown.

The main objectives of the present paper are firstly, to study numerically the effects of swirl
driven by the rotating pipe wall and assess the LES results against the experimental data of
Imao and Itoh [8]; and secondly, to compare the performance of two different subgrid scale
models, a dynamic model and the Smagorinsky model, in the rotating pipe flow.
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2. BASIC EQUATIONS

The first task in LES is to define the large scale components of the flow field, which the
method will attempt to calculate directly. There are several ways of doing this mathematically
and all are essentially equivalent to averaging the equation over a small region of space or
low-pass filtering the equation in Fourier space. Since finite volume method (FVM) with a
staggered grid is used in the present study, it makes sense, therefore, to use an approach that
arrives at the discretized equations as quickly as possible. The method was originally developed
by Deardorff [15] and extended by Schumann [16,17]. The idea is that the equations are
integrated over an appropriate control volume and hence the velocity components at the
corresponding grid points are interpreted as the volume average. Any small scale (smaller than
the mesh or control volume) motions are averaged out and have to be accounted for by a
subgrid scale model. For simplicity the incompressible Navier–Stokes equations in Cartesian
co-ordinates are presented
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�(ūi

(xj

+
(ūj
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The term uiuj cannot be computed and the difference between it and the part that can be
computed, ūiūj, is the subgrid stress tij

tij=uiuj− ūiūj (2)

which accounts for the unknown small scale (subgrid scale) motions, analogous to the familiar
Reynolds stress occurring in the time-averaged Navier–Stokes equations. In contrast to the
standard Reynolds stress, whose length and velocity scales are those of the entire turbulent
flow field, the length and velocity scales of the subgrid stress are only associated with the small
scale motions and can be deduced relatively simply on a local basis from the mesh and the
resolved velocity field of the simulation. The earliest estimate for the velocity scale, based on
the local strain rate scalar S, proposed by Smagorinsky [18], was S +D. He went on to combine
these scales into the simple gradient diffusion model that bears his name

tij−dijtkk/3=nsS( ij (3)

ns=CD2S( (4)

S( =
2S( ijS( ij (5)

D= 3
DxDyDz (6)

C was predicted theoretically from the Kolmogorov spectrum in homogeneous isotropic
turbulence by Lilly [19] to be 0.172, which has been proven far too big for wall-bounded shear
flows. C is taken to be 0.01 in the present study when the Smagorinsky subgrid scale model is
used (with the Van Driest damping near the wall) and it is computed as follows when a
dynamic subgrid scale model is employed:
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where the hat indicates that a second filter, usually called the test filter, which is twice the mesh
size in the present study, has been applied to the velocity fields. This is a standard procedure
and details can be found elsewhere [20,21]; in the present simulation C is averaged in both
streamwise and circumferential directions. However, this still cannot guarantee that C will not
go negative, although physically one can argue that this means backscatter. Numerically this
can cause serious trouble when the total viscosity (sum of subgrid scale eddy viscosity and
molecular viscosity) goes negative. In some regions, Mij can be very small or may even
approach zero, making Equation (7) poorly conditioned and as a result of this, C can be
unrealistically large. In the current simulations, the value of C has been monitored to check
that it is not larger than 0.12 or less than 0. It has been found that the computed C in most
of the simulation time and most of the computational domain is within this range.

The momentum and continuity equations used in the present study are in a cylindrical
co-ordinate system and given below (the overbar is omitted in the following equations for
simplicity).
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where qx represents axial flux ru (u is the axial velocity), w is the tangential velocity and qr is
radial flux r6 (6 is the radial velocity), which will be discussed in the next section (why the
fluxes are introduced instead of the usual velocity components (u, 6)).

The stress are given as follows:

tij=2(n+ns)Sij (15)
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where ns is the subgrid eddy viscosity given by Equation (4) and Sij in the present study using
a cylindrical co-ordinates system are as follows:
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3. NUMERICAL PROCEDURES

The above governing equations are discretized on a staggered mesh using FVMs. The explicit
second-order Adams–Bashforth scheme is used for the momentum advancement except for the
pressure term. The second-order central differencing scheme is used for the spatial discretiza-
tion. The Poisson equation for pressure is solved using an efficient hybrid Fourier multigrid
method described in more detail by Voke and Yang [22].

The gains in computational efficiency are generally very significant through the use of
Fourier methods. They arise partly because of the reduction of the dimension of the problem
and the lack of any connection between the solution for different discrete wavenumbers, and
also partly because the higher wavenumber problems have increased diagonal dominance in
the solution of Poisson-like equations. This results in greatly accelerated convergence of the
higher wavenumber problems and a corresponding saving of computer resource.

Figure 1 shows the computational domain in the present study. The diameter of the pipe is
D=30 mm and the length of the computational domain is 4D. In the circumferential direction,
the whole section is simulated. The Reynolds number is 20000 based on the mean axial
velocity (denoted as Um, r +Um+area=mass flow rate) and the pipe diameter. All the
dimensions and Reynolds number have been chosen to match those of the experiment [8]. The

Figure 1. Computational domain.
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simulations are carried out with 192+64+128 grid points (x-, r- and u-directions respectively)
giving Dx+ =30, Dy+ varies from 0.75 (nearest to the pipe wall) to 15 and Dz+ varies from
0.7 (closest to the centre) to 36.

Periodic boundary conditions are applied in the axial direction since the simulated pipe flow
is fully developed. The same boundary treatment is applied in the circumferential direction at
u=0° and 360°. On the pipe wall the usual no-slip boundary condition is applied. However,
owing to the cylindrical co-ordinate system employed in the present study, the governing
equations contain a singularity at the centreline of the pipe (r=0), which makes it difficult to
specify boundary conditions for all velocity components at the pipe centre. Unger and
Friedrich [11] argue that no boundary conditions are needed as the grid surface area goes to
zero and therefore the momentum and mass flux is zero too. The present author takes another
approach to deal with this by solving the fluxes (r times velocity components) instead of the
velocity variables directly as shown in Equations (11)–(14). Therefore, at the centreline, zero
is specified for all three variables employed in the equations. Verzicco and Orlandi [23]
presented a finite difference scheme in cylindrical co-ordinates, which is similar to the present
approach. However, they introduced radial flux only, while both radial and axial fluxes are
introduced in the present study. In addition to the singularity at the centreline, the curvature
of the cylindrical co-ordinate system can affect the time integration. The time step is restricted
by stability criteria to avoid numerical instabilities in all explicit time integration schemes.
Since the mesh size in the circumferential direction is proportional to r, it can become quite
small towards the centreline. However, due to the present approach employing the fluxes as the
variables, the minimum Dz+ is 0.7, which is not too small and quite close to the minimum
Dy+. It has been found that, in these circumstances, there is no need for all the terms
containing derivatives in the circumferential direction to be treated implicitly in time. The
dimensionless time step used in the present study is 0.0002 (normalized by D/Um), which is
more or less the same as used for boundary layer transition studies [24,25].

The simulations are initiated from a specified mean axial velocity profile using power-law
and random disturbances to mimic the turbulent fluctuations in all three directions. Since the
random fluctuations generated in this way are not correlated (white noise with a flat spectrum)
they decay more rapidly. Therefore, the initial disturbances need to be stronger than the
expected root-mean-square (r.m.s) level but not too strong so as numerical instability may
occur. There are alternative ways of avoiding such a rapid decay of artificially generated
turbulence, for example, reducing the viscosity initially. The simulations are run sufficiently
long to reach a statistically stationary state before the statistics are collected. The final statistics
are accumulated by spatial averaging in the homogeneous streamwise and circumferential
directions and by time averaging.

Three runs using the Smagorinsky subgrid scale model, one with the pipe wall stationary
and another two with the pipe wall rotating at different rates denoted by N=W0/Um (0, 0.5,
1.0; W0 is the tangential velocity of the rotating pipe wall), and two runs using a dynamic
subgrid scale model, N=0, 1.0, have been carried out in the present study. Each simulation is
usually run for 20000 time steps before the statistics are gathered and run for further 40000
time steps to accumulate the statistics with a sample taken every 20 time steps (2000 samples).
One run using the Smagorinsky subgrid scale model takes about 90 CPU hours using one
processor on a Cray-YMP machine (one run using the dynamic model takes about 110 CPU
hours).
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4. RESULTS

The results presented below in Figures 2 and 3 are obtained using the Smagorinsky subgrid
scale model.

Figure 2 shows the mean axial velocity profile normalized by the bulk averaged axial
velocity Um versus the radial position normalized by the pipe radius. The simulated results
compare reasonably well with the experimental data for all three cases, N=0 (no rotation),
N=0.5 and 1.0 (pipe rotating). Both the experimental data and the simulated results show
that when the pipe is rotating, axial velocity increases near the centre and decreases near the
wall, deforming gradually the fully developed turbulent profile of the axial velocity into a

Figure 2. Axial velocity: lines, LES; symbols, experimental data.

Figure 3. Tangential velocity: lines, LES; symbols, experimental data.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 681–694
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laminar-like profile and decreasing the wall friction force (hence the drag reduction) with an
increase in rotation rate, due to the stabilizing effect caused by the centrifugal force. The
calculations by Hirai et al. [10] employing the conventional k–o model failed to predict the
tendency of the experimental results, i.e. the predicted mean axial velocity profile at different
pipe rotation rates was the same as the profile without rotation.

The comparison between the simulated and the measured tangential velocity profiles
normalized by W0 is shown in Figure 3 for N=0.5, 1.0 and a good agreement has been
obtained between the numerical results and the experimental data for both cases. It can be seen
form both the LES results and the experimental data that the tangential velocity profile is not
a solid body rotation type but is similar to a parabolic distribution, while it is shown by Hirai
et al. [10] that using the conventional k–o model, or even a k–o model modified by the
Richardson number to account for the effects of rotation would predict a solid body rotation
type profile. LES has produced much better results in the present study, as also shown by
Orlandi et al. [13] and Eggels et al. [14] in their LES and DNS studies of rotating pipe flow.
It is also worth noting that the profiles under the two rotation rates are more or less the same
with little discrepancy between them and it can be said that the profiles are almost independent
of rotation rate and Reynolds number as pointed out before by many researchers [4,5,13,14].
However, it is not fully understood yet why the mean circumferential velocity has this universal
distribution, independent of Reynolds number and rotation rate.

The results obtained using a dynamic subgrid scale model (for cases N=0 and 1.0) are
almost identical and therefore have not been shown. However, there are some differences
between predicted turbulence quantities obtained using different subgrid scale models as can be
seen in Figures 4–7.

Following the practice by Imao and Itoh [8] in normalizing their experimental data, Um is
also used here as the parameter for normalizing turbulence intensity and Reynolds stress
instead of ut (friction velocity). The reason for this is that when the pipe is rotating the friction
loss reduces due to the stabilizing effect as mentioned above, which means that ut decreases.
If ut is used for normalization Reynolds stress components become large when the pipe is
rotating and hence it is difficult to tell the effect of pipe rotation directly. In addition,
tangential shear stress exists when the pipe is rotating, which also argues for Um to be used as
the normalization parameter.

Figure 4 shows the axial r.m.s. u %. The experimental data indicate that when the pipe is
rotating the streamwise fluctuation decreases a little but not as much as in the LES results. The
LES results clearly show that the fluctuation not only reduces when the pipe is rotating but
also the peak of the fluctuation shifts slightly away from the wall. This is difficult to confirm
from the experimental data as they are not available very near the wall when r/R is larger than
0.9. This tiny shift seems to be present in the LES results by Eggels et al. [14] but hardly
observable in the DNS results by Orlandi et al. [13]. The simulated peak values with both
subgrid scale models are quite close to those of the experimental data but the results obtained
using the dynamic subgrid scale show a slightly better overall agreement and the peak value
especially is closer to the experimental data. However, the numerical results obtained by both
subgrid scale models decrease slightly more quickly away from the wall.

The radial and tangential velocity fluctuations are presented in Figures 5 and 6. The
numerical results follow the experiment data in that the fluctuations reduce when the pipe is
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Figure 4. Axial fluctuations: lines, LES; symbols, experimental data.

Figure 5. Radial fluctuations: lines, LES; symbols, experimental data.

rotating and a reasonably good agreement has been obtained. It can be seen that the radial
component decreases more compared with the other two components. This indicates that the
radial fluctuation is the most suppressed, which agrees with the Taylor–Proudman theorem,
the turbulent fluctuations perpendicular to the plane of rotation are suppressed because the
rotating flow has the tendency of becoming two-dimensional in its plane of rotation. The
predicted peak locations for radial and tangential fluctuations, similar to that of the axial
component, move away from the wall when the pipe is rotating, which were also clearly shown
in the LES results by Eggels et al. [14]. Both the LES results and the experimental data clearly
show that tangential fluctuations near the wall are actually slightly larger at N=1.0 than those
at N=0.5, indicating that it is enhanced rather than suppressed due to rotation. However, the

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 681–694
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Figure 6. Tangential fluctuations: lines, LES; symbols, experimental data.

Figure 7. Turbulent shear stress: lines, LES; symbols, experimental data.

simulated results from both subgrid scale models show that the predicted peak values, especially
for tangential velocity, are lower than those of the experiment. Again, the results from the
dynamic subgrid scale model are slightly better.

The suppressing effect due to the rotation can be more clearly demonstrated by Figure 7,
which shows turbulent shear stress. The LES results agree well with the experimental data in
the near wall region but reduce more rapidly than the experimental data similar to normal
stresses as discussed above. Both the LES results and the experimental data show a considerable
reduction when the pipe is rotating. An obvious reduction occurs when the rotation rate changes
from 0.5 to 1.0. At N=1.0, its peak value reduces to only about one-third of that without
rotation. Again, the simulated results from the dynamic subgrid scale model are slightly better.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 681–694
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One possible explanation for the discrepancy of turbulent fluctuations between the experi-
mental data and the numerical results could be due to lack of mesh resolution away from the
wall towards the pipe centre. Another possible reason is that both the subgrid grid scale
models are too dissipative, which is true for the Smagorinsky model but not true for the
dynamic model. However, the constant obtained from the dynamic model in the present study
is averaged over the axial and circumferential directions and has been monitored to check that
negative values are not allowed for numerical stability reasons. Therefore, effects of backscat-
ter are not captured in the present study. The averaged subgrid scale eddy viscosity obtained
from the dynamic model is slightly smaller (about 10%) than that obtained by the Smagorinsky
model, which may explain why the dynamic model gives slightly better results. Better
agreement between the numerical results and the experimental data was, indeed, obtained by
Eggels et al. [12] and Orlandi et al. [13] in their DNS studies of turbulent pipe flow. However,
their comparison was only limited to the flow without rotation and at relatively low Reynolds
numbers.

Figures 8 and 9 show snapshots of the turbulent velocity vectors (6%, w %) on an (r, u) plane
at N=0 and 1.0. It can be seen from both plots that vortical structures exist in certain regions,
which indicates that most of the dynamics occur in those regions. Further away from the wall
towards the central region there is much less activity. It is not so obvious to see the effects of
pipe rotation from those snapshots but if one examines carefully the region very close to the
wall then when the pipe wall is rotating, the near wall region is less turbulent due to the

Figure 8. (6%, w %) vectors at N=0.
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Figure 9. (6%, w %) vectors at N=1.

suppression of radial fluctuations, and the vortical structures seem to shift a little bit away
from the wall, leading to the drag reduction.

5. CONCLUSIONS

Numerical methods for performing LES using a cylindrical co-ordinate system have been
described and applied to fully developed turbulent pipe flow with different pipe wall rotation
rates. The numerical results compare reasonably well with detailed experimental data and also
confirm the experimental observations that turbulence decreases with an increase in pipe
rotation due to the stabilizing effect of the centrifugal force. The parabolic distribution of the
mean circumferential velocity found in experiments is also reproduced by LES, which any
turbulence models using the eddy–viscosity concept would fail to reproduce and would predict
a solid body rotation profile as shown by Hirai et al. [10].

In the present study, the Smagorinsky subgrid scale model and a dynamic subgrid scale
model have been used. However, the performance of the dynamic subgrid scale model is only
slightly better than that of the Samogrinsky model in the present study, which may be
attributed to the use of a reasonably fine mesh in the near wall region and the turbulent flow
being fully developed. It is generally believed that a dynamic model would give better
performance for many flow situations such as transitional flow, recirculating flow and flow in
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the near wall region. In those situations the flow is under rapid change and a constant C in the
Smagorinsky subgrid scale model would not be expected to perform very well and account for
the different, complicated flow features.

The mean circumferential velocity has a parabolic profile shape and appears to be propor-
tional to (r/R)2, independent of the Reynolds number and the rotation rates as shown
experimentally [3–5,8] and numerically [10,13,14]. However, it is far from fully understood
why such a universal velocity distribution exists. Further work is needed to be done to clarify
this and more LES data need to be collected to perform detailed analysis confirming that if the
relationship between the drag reduction and the change of the near-wall vortical structures at
a lower Reynolds number as shown by Orlandi et al. [13] in their DNS study of rotating pipe
flow exists at higher Reynolds numbers.
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